Геология и минерализация железорудных месторождений, технологические аспекты процессов промышленной переработки железных руд и железосодержащих минеральных ресурсов
Железо в химически чистом виде – блестящий серебристо-белый вязкий и ковкий металл, имеющий плотность 7,8 г/см3 и температуру плавления 1540°С. Образует сплавы со многими элементами. Наиболее распространенными являются железоуглеродистые сплавы (чугун, стали), сплавы железа с марганцем (ферромарганец), кремнием (феррокремний), хромом (феррохром), вольфрамом, ванадием, титаном, ниобием, кобальтом, никелем, молибденом и др., играющие ведущую роль в современной технике.
Уровень производства железа и его сплавов – один из определяющих показателей состояния промышленного развития страны.
Среднее содержание железа в земной коре – 5,0 %, оно является одним из наиболее распространенных элементов и входит в состав большого числа минералов (более 300).
Главные промышленно-ценные минералы железа – оксиды и гидроксиды, в меньшей степени – карбонаты; это магнетит, титаномагнетит и гематит, а также мартит (псевдоморфоза гематита по магнетиту), гётит, гидрогётит (лимонит) и сидерит (таблица 1 и рисунок 1).
Таблица 1. Главные минералы железных руд
* Магнетит с изоморфной примесью титана или гомогенный твердый раствор магнетита и ульвошпинели. К титаномагнетиту часто относят и ильменомагнетит – магнетит с ильменитовыми продуктами распада твердого раствора.
Рис 1. Виды промышленно-ценных минералов железа
Железорудные месторождения промышленного значения весьма разнообразны. Они известны в эндогенных, экзогенных и метаморфогенных комплексах пород.
С учетом генезиса принято выделять следующие основные промышленные типы.
Магматические месторождения:
а) титаномагнетитовые и ильменит-титаномагнетитовые, представляющие собой зоны концентрированной вкрапленности (с шлировыми и жило-линзообразными обособлениями) ванадий- и титансодержащих магнетитов в интрузивах габбро-пироксенит-дунитовой, габбровой, габбро-диабазовой и габбро-анортозитовой формаций (Качканарское, Копанское, Первоуральское на Урале, Пудожгорское в Карелии, Чинейское в Читинской области, месторождения Бушвельдского комплекса в ЮАР, Роутивара, Таберг в Швеции, Аллард-Лейк (Лак-Тио) в Канаде и др.);
б) бадделеит-апатит-магнетитовые, образующие серии линзо- и жилообразных тел в ультраосновных щелочных интрузивах с карбонатитами (Ковдорское на Кольском полуострове, Палабора в Южной Африке).
На долю титаномагнетитовых и бадделеит-апатит-магнетитовых руд приходится 6,6 % мировых разведанных запасов и 5,6 % производства товарных руд.
В России они составляют 12,9 % в запасах и 18,2 % в производстве товарных руд.
Метасоматические месторождения (месторождения скарново-магнетитовых руд) представлены в разной степени оруденелыми скарнами и скарноидами, образующими сложные пласто- и линзообразные залежи магнетитовых руд в осадочных, вулканогенно-осадочных и метаморфических породах (Соколовское, Сарбайское, Качарское в Казахстане; Высокогорское, Гороблагодатское и другие на Урале; Абаканское, Тейское в Красноярском крае; Шерегешевское, Таштагольское и другие в Горной Шории; Таежное, Десовское в Якутии; Маркона в Перу, месторождения Чилийского железорудного пояса; Чогарт, Чадор-Малю в Иране; Мааншань в Китае).
На долю скарново-магнетитовых руд приходится 9,5 % мировых разведанных запасов и 8,3 % производства товарных руд.
Руды данного типа в России составляют соответственно 12,2 и 12,9 %.
Гидротермальные месторождения:
а) генетически связанные с траппами и представленные жило-столбообразными и различной сложной формы залежами магномагнетитовых руд в осадочных, пирокластических породах и траппах (Коршуновское, Рудногорское, Нерюндинское, Капаевское, Тагарское в Восточной Сибири);
б) гидротермально-осадочные сидеритовые, гематит-сидеритовые, представленные пласто-, жило- и линзообразными согласными и секущими залежами сидеритовых, гематит-сидеритовых (в верхних горизонтах окисленных) руд в осадочных породах (Бакальское рудное поле на Урале, Березовское в Читинской области, Уэнза, Бу-Кадра, Заккар-Бени-Саф в Алжире, Бильбао в Испании).
Доля руд данного типа в разведанных запасах и производстве товарных руд в мире незначительна и не превышает 1 %, в России в запасах она составляет – 5,4 %, в производстве товарных руд – 2,9 %.
Вулканогенно-осадочные месторождения – согласные пласты и линзы гематитовых, магнетит-гематитовых и гематит-магнетитовых руд в вулканогенно-осадочных породах (Западно-Каражальское в Казахстане, Холзунское на Алтае). Доля руд данного типа в разведанных запасах и производстве товарных руд в мире незначительна. В России такие месторождения пока не разрабатываются.
Осадочные морские месторождения, образовавшиеся в морских бассейнах и представленные слабо дислоцированными пластовыми залежами лептохлоритовых и гидрогётитовых оолитовых руд в морских терригенно-карбонатных мезокайнозойских отложениях (Керченский железорудный бассейн на Украине, Аятское в Казахстане, месторождения бурых железняков Лотарингского железорудного бассейна (на территории Франции, Бельгии, Люксембурга), Великобритании, Германии, провинции Ньюфаундленд Канады и Бирмингемского района в США ).
Доля руд данного типа в разведанных запасах в мире составляет 10,6 %, в производстве товарных руд – 8,9 %.
В России такие месторождения не разведаны и не разюрабатываются.
Осадочные континентальные месторождения, образовавшиеся в речных или озерных бассейнах и представленные пластовыми и линзообразными залежами лептохлоритовых и гидрогётитовых оолитовых руд в ископаемых речных отложениях (Лисаковское месторождение в Казахстане).
Доля руд данного типа в разведанных запасах и производстве товарных руд в мире незначительна. В России такие месторождения не разведаны и не отрабатываются.
Метаморфизованные железистые кварциты широко распространены на древних щитах, платформах и на некоторых срединных массивах фанерозойских складчатых областей. Большинство их имеет раннепротерозойский и архейский возраст; значительно меньше распространены позднепротерозойские и раннепалеозойские месторождения. Железистые кварциты образуют огромных размеров железорудные бассейны. Рудные залежи кварцитов в пределах месторождений обычно имеют крупные размеры: километры по простиранию, первые сотни или десятки метров по мощности. Характерна пластообразная форма рудных тел, тонкополосчатые текстуры и сходный минеральный состав руд на различных месторождениях (Криворожский бассейн на Украине, в России – месторождения Курской магнитной аномалии, Оленегорское на Кольском полуострове, Костомукшское в Карелии, Тарыннахское и Горкитское в Якутии, в Австралии – бассейн Хамерсли, в Бразилии – район Каражас и «Железного четырехугольника», в США – район оз. Верхнего, в Канаде – Лабрадорский прогиб, в Китае – бассейн Аньшань-Бенси и др.). Крупные и уникальные по запасам месторождения, легкая обогатимость руд, возможность разработки открытым способом большими карьерами с применением мощной горнодобывающей и транспортной техники позволяют считать их благоприятными объектами добычи железных руд во всех бассейнах мира.
Доля руд данного типа в разведанных запасах и производстве товарных руд в мире превышает 60 %, в России в запасах она составляет – 55,9 %, в производстве товарных руд – 64,5 %.
Месторождения коры выветривания, представленные богатыми гидрогематит- и сидерит-магнетитовыми, мартит-магнетитовыми рудами, формируются при преобразовании железистых кварцитов в результате гипергенных процессов.
В соответствии с этим в своем распространении они связаны с районами и площадями развития железистых кварцитов, приурочены к развивающимся по ним площадным и линейным корам выветривания (Михайловское, Яковлевское, Гостищевское, Висловское, Разуменское в России, месторождения богатых руд Кривого Рога на Украине, железорудные районы Австралии, Бразилии, Индии, США).
На долю месторождений данного типа приходится 12,5 % разведанных запасов России и 1,3 % производства товарных руд.
В сумме доля месторождений двух последних типов – железистых кварцитов и развивающихся по ним полигенных богатых железных руд – составляет в мире 70,9 % разведанных запасов и 74,4 % производства товарных руд, т.е. это наиболее важные промышленные типы месторождений.
Доля руд двух последних типов месторождений в России составляет в запасах 68,4 %, в производстве товарных руд – 65,8 %.
Прочие гипергенные железные руды:
а) бурые железняки, связанные с корами выветривания сидеритов (Бакальская и Зигазино-Комаровская группы месторождений на Урале, Березовское в Читинской области);
б) прерывистые плащеобразные залежи хром-никелевых гётит-гидрогётитовых руд, распространенные в коре выветривания ультраосновных пород (латеритные руды Кубы, Филиппин, Индонезии, Гвинеи, Мали, на Урале – Серовское и месторождения Орско-Халиловского района). Такие руды, как правило, легированы никелем и кобальтом.
Доля прочих гипергенных железных руд в разведанных запасах в мире составляет 2,4 %, в производстве товарных руд – 2,0 %, в России соответственно 1,1 и 0,2 %.
В зависимости от условий образования чрезвычайно разнообразен и минеральный состав железных руд, определяющий в значительной степени их промышленную ценность. Железные руды подразделяются на 11 основных промышленных типов (таблица 2).
Таблица 2. Промышленные типы железных руд, их минеральный состав и элементы-примеси
Железные руды, требующие обогащения, в настоящее время обеспечивают в России 89 % товарного производства. Они подразделяются на легко- и труднообогатимые, что зависит от их минерального состава и текстурно-структурных особенностей. К легкообогатимым относятся железные руды магнетитового состава, и прежде всего магнетитовые кварциты.
Труднообогатимыми являются тонкозернистые полиминеральные железные руды, в которых железо входит в состав нескольких немагнитных минералов (гематит, мартит, сидерит) или рудные минералы (гётит, гидрогётит) образуют порошковатые, оолитовые скрытокристаллические и коллоидальные массы. При измельчении этих руд не удается раскрыть рудные минералы из-за их крайне малых размеров и тонкого прорастания с нерудными минералами. Наиболее характерные примеры труднообогатимых руд – окисленные железистые кварциты Кривого Рога и КМА, бурожелезняковые руды всех типов.
Выбор способов обогащения определяется минеральным составом руд, их текстурно-структурными особенностями, а также характером нерудных минералов и физико-механическими свойствами руд.
Для обогащения гидрогётит-лептохлоритовых оолитовых бурых железняков используются либо гравитационный, либо гравитационно-магнитный (в сильных полях) способ. Глинистые гидрогётитовые и мартитовые (валунчатые) руды обогащаются промывкой. Обогащение сидеритовых руд обычно достигается сепарацией в тяжелых средах с последующим обжигом.
При переработке железистых кварцитов и скарново-магнетитовых руд обычно получают концентраты с содержанием железа 62–66 %; для электрометаллургического передела и производства горячебрикетированного железа выпускаются концентраты с содержанием железа не ниже 69,5 % и кремнезема не выше 3,0 %, серы не более 0,06 %; в кондиционных концентратах мокрой магнитной сепарации из апатит-магнетитовых и магномагнетитовых руд содержание железа составляет 62–64 %;
Концентраты гравитационного и гравитационно-магнитного обогащения оолитовых бурых железняков в настоящее время считаются кондиционными при содержании железа 44–49 %, кремнезема – 18–11 %, глинозема – 4–5 %, пентоксида фосфора – 0,6–0,8 %, однако по мере совершенствования методов обогащения требования к концентратам из этих руд будут повышены.
Перспективными направлениями и процессами совершенствования технологии переработки различных типов железных руд являются:
— крупнопорционная радиометрическая сортировка по результатам экспресс-анализа транспортных емкостей на рудоконтролирующих станциях (РКС) как один из элементов системы управления качеством добываемого сырья для рационального использования запасов месторождения и создания эффективной технологии обогащения руд;
— радиометрическая сепарация кускового материала после крупного дробления (–200 мм) для некоторых типов комплексных руд, например, титаномагнетитовых (удаление отвальных хвостов, упрощение технологической схемы за счет исключения гравитационного цикла) и апатит-магнетитовых (удаление отвальных хвостов, выделение кальцитового продукта, улучшение карбонатного модуля). Эти исследования проводится в соответствии с соответствующими нормативно-методическими документами.
— обогащение измельченной руды гравитационным методом на основе тяжелых суспензий в гидроциклонах.
Железные руды в ряде случаев содержат попутные ценные компоненты, использование которых улучшает технико-экономические показатели работы предприятий по добыче полезных ископаемых и позволяет получать дефицитную товарную продукцию.
Из руд, подвергающихся обогащению, титан, медь, кобальт, золото, платина, апатит, редкие металлы и другие компоненты, находящиеся в самостоятельных минеральных формах, как правило, могут быть извлечены в самостоятельные концентраты. Промышленностью освоена технология получения из хвостов магнитного обогащения комплексных руд апатитового, бадделеитового, ильменитового, медного концентратов, удовлетворяющих требованиям промышленности; кобальт-пиритного концентрата, пригодного для дальнейшей гидрометаллургической переработки при содержании кобальта не ниже 0,12 %.